Develop a Policy for AP® Computer Science Principles

AP Computer Science Principles

- Launched in 2016
- Largest AP course launch ever
- 120K+ students took the end-of-course exams in first two years
Building a strong AP CSP policy will attract highly qualified students to your institution, many of whom may be likely to take additional courses in your computer science program. AP CSP’s curriculum has contributed to increased participation in computer science courses among underrepresented students.

FROM 2017 TO 2018, THERE HAS BEEN A GROWTH IN AP COMPUTER SCIENCE PARTICIPATION OF:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>61%</td>
<td>70%</td>
</tr>
<tr>
<td>among African American students</td>
<td>among Hispanic students</td>
<td>among female students</td>
</tr>
</tbody>
</table>

About the Course

Higher education faculty and experienced high school computer science teachers designed AP CSP with significant support from the National Science Foundation. The course offers a multidisciplinary approach to teaching the underlying principles of computation, and it opens a pathway for a wide variety of students—including those traditionally underrepresented in computer science—to continue studies in subsequent college-level STEM and computing courses.

The rigorous AP CSP curriculum framework focuses on the innovative aspects of computing and uses current technologies to create computational artifacts for self-expression and problem solving.

About the Assessment

The AP Computer Science Principles Assessment consists of:

- **Two through-course performance tasks**
 - The Create performance task focuses specifically on the creation of a computer program through the collaborative and iterative process of programming.
 - The Explore performance task requires students to identify a computing innovation, explore its impact, and create a related digital artifact (e.g., digital art, video) accompanied by a written response.
- **A two-hour paper and pencil end-of-course AP Exam.**

The performance tasks are reviewed through the AP Reading process, where more than 17,000 AP teachers and higher education faculty come together annually to score student responses in all AP Exams.

The AP CSP Assessment measures student achievement of the course learning objectives. The objectives are tied back to the seven Big Ideas, which are foundational to computer science. The Big Ideas include: creativity, abstraction, data and information, algorithms, programming, the internet and global impact.

The programming language for the course is language agnostic. Teachers select a language they consider most appropriate to meet the requirements of the task. Review the AP CSP Course and Exam Description at collegeboard.org/APCSPPrinciplesCED for detailed information on the performance tasks and the end-of-course AP Exam.
Developing a Credit and Placement Policy

In surveys of college and university computer science faculty, 88% confirmed that the AP Computer Science Principles course is a college-level computing course. Now is the time to develop a credit and placement policy to attract highly qualified students to your institution. Your institution’s AP credit policy reflects the extent to which your college or university will recognize student performance on AP Exams. This policy is an important part of the messaging a prospective student will seek out when choosing a college. Some best practices to consider:

- If you’re at a public institution with a uniform statewide or systemwide credit policy, check with your state or system administrators on next steps.
- If you’re at a private institution or a public one without a uniform statewide or systemwide credit policy, assemble a policy team, consisting of computer science department faculty, provosts, deans, or other campus leaders, to set an AP CSP policy.
- Set a timeline, develop a project plan for the review process, and ensure that there’s a collective understanding of the institution-wide AP policies and how the AP CSP policy will fit in.
- Review the AP CSP Course and Exam Description at: collegeboard.org/APCSPPrinciplesCED
- Publish the policy on your website, and share at: collegeboard.org/CSPcredit

For information, contact us at: apcsp@info.collegeboard.org

The course is organized around the following seven Big Ideas, which are foundational to computer science:

- Creativity
- Abstraction
- Data and information
- Algorithms
- Programming
- The internet
- Global impact
Sample Credit and Placement Policies

For models from other campuses, consider the sample policies below. These are drawn from the actual policies from the more than 500 colleges and universities that have already developed a credit and placement policy for AP CSP.

LARGE PUBLIC UNIVERSITY IN A POPULOUS SOUTHERN STATE

- **Course:** Programming 1
- **Minimum score for credit/placement:** 3
- **Description:** Introduces the basic concepts in using computation to enhance problem-solving abilities; understanding how people communicate with computers, and how computing affects society; computational thinking; representation of data; analysis of program behavior; methods for identifying and fixing errors in programs; understanding abilities and limitation of programs; development and execution of programs.

SELECTIVE PRIVATE INSTITUTION ON THE EAST COAST

- **Course:** Computational Thinking
- **Minimum score for credit/placement:** 3
- **Description:** Introduces the central idea of computer science, and instills ideas and practices of computational thinking. Students engage in creative activities to learn how computing can change the world.

LARGE PUBLIC FLAGSHIP UNIVERSITY IN A MIDWESTERN STATE

- **Course:** Little Bits to Big Ideas
- **Minimum score for credit/placement:** 3
- **Description:** Broad introduction to the nature, capabilities, and limitations of computing. Topics range from the way data is represented and stored, to the way today’s computers work, to the general ideas of algorithms and computational efficiency, to the future of computing. Covers "big ideas" across various areas of the field, including cryptography and internet security, problem solving, modeling and simulation, and artificial intelligence.

Learn more at: collegeboard.org/CSPHE